Inorg. Chem. 2008, 47, 2098-2102

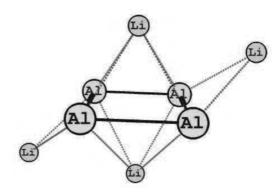
Inorganic

Stabilization of an All-Metal Antiaromatic Molecule (Al₄Li₄) Using BH and C as Caps

Priyadarshi Satpati* and K. L. Sebastian

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

Received May 29, 2007


It has been reported by Pati et al. (*J. Am. Chem. Soc.* **2005**, *127*, 3496) that coordination with a transition metal can stabilize the "antiaromatic", all-metal compound Al_4Li_4 . Here, we report that it can also be stabilized by capping with a main group element like C and its isoelectronic species BH. Our calculations of binding energy, nuclear independent chemical shift, energy decomposition analysis, and molecular orbital analysis support the capping-induced stability, reduction of bond length alternation, and increase of aromaticity of these BH/C-capped Al_4Li_4 systems. The interaction between p_x and p_y orbitals of BH/C and the HOMO and LUMO of Al_4Li_4 is responsible for the stabilization. Our calculations suggest that capping can introduce fluxionality at room temperature.

1. Introduction

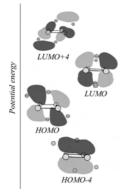
The concepts of aromaticity and antiaromaticity are of fundamental interest in chemistry.^{1–4} The concepts have recently been extended to all metal compounds.^{5–9} Gas-phase observations of MAl₄⁻ (M = Li, Na, and Cu) and Li₃Al₄⁻ coupled with computations led to the conclusion that Al₄^{2–5,10} is "aromatic", while Al₄^{4–} has been claimed to be "antiaromatic".¹¹ However, Schleyer et al. have argued that Al₄^{4–} is more σ -aromatic than π -antiaromatic.¹² Havenith et al.¹³

- * Author to whom correspondence should be addressed. E-mail: psatpati@ipc.iisc.ernet.in.
- Minkin, V. I.; Glukhontsev, M. N.; Simkin, B. Ya. Aromaticity and Antiaromaticity; Wiley: New York, 1974.
- (2) Shaik, S.; Shurki, A.; Danovich, D.; Hilberty, P. C. Chem. Rev. 2001, 101, 1501–1539.
- (3) Gomes, J. A. N. F.; Mallion, R. B. Chem. Rev. 2001, 101, 1359– 1383.
- (4) Shetty, S.; Kar, R.; Kanhere, D. G.; Pal, S. J. Phys. Chem. A 2006, 110, 252–256.
- (5) Li, X.; Kuzentsov, A.; Zhang, H.-F.; Boldyrev, A. I.; Wang, L. Science 2001, 291, 859–861.
- (6) Li, X. H.-F.; Wang, L.-S.; Kuznetsov, A. E.; Cannon, N. A.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2001, 40, 1867–1870.
- (7) Kuznetsov, A.; Boldyrev, A. I.; Li, X.; Wang, L.-S. J. Am. Chem. Soc. 2001, 123, 8825–8831.
- (8) Datta, A.; Mallajosyula, S. S.; Pati, S. K. Acc. Chem. Res. 2007, 40, 213–221.
- (9) Schleyer, P. v. R. Chem. Rev. 2001, 101, 1115–1117.
- (10) Boldyrev, A. I.; Wang, L. Chem. Rev. 2005, 105, 3716-3757.
- (11) Li, X.; Kuzentsov, A.; Zhang, H.-F.; Boldyrev, A. I.; Wang, L. Science **2003**, *300*, 622.
- (12) Chen, Z.; Corminboeuf, C.; Heine, T.; Bohmann, J.; Schleyer, P. v. R. J. Am. Chem. Soc. **2003**, *125*, 13930.
- (13) Havenith, R. W. A.; Fowler, P. W.; Steiner, E.; Shetty, S.; Kanhere, D. G.; Pal, S. Phys. Chem. Chem. Phys. 2004, 6, 285.

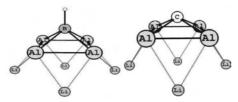
2098 Inorganic Chemistry, Vol. 47, No. 6, 2008

Figure 1. Free Al₄Li₄ (C_{2h}).

studied the ring current patterns of Al₄Li₄ and concluded that, although the $(4n + 2) \pi$ -electron count suggests aromaticity and hence diatropicity, the π orbital is magnetically inactive in Al₄²⁻. However, the paratropic ring current supports the antiaromatic nature of Li₃Al₄⁻ and Li₄Al₄. Thus, they showed that simple electron-counting is insufficient to conclude whether a system is aromatic or antiaromatic. Until now, these clusters have been synthesized only in the gas phase by a laser vaporization technique, which is insufficient for providing structural details. It would be of great interest if we can stabilize Al₄Li₄ by attaching a suitable group. For such systems, the bond-length alternation and charge densities (at the ring critical point), which are well established parameters for characterizing aromaticity, can be measured and calculated. Datta and Pati¹⁴ showed that Al₄M₄ (M =


10.1021/ic701040g CCC: \$40.75 © 2008 American Chemical Society Published on Web 02/09/2008

Stabilization of an All-Metal Antiaromatic Molecule (Al₄Li₄)


Table 1. Energy (in au), Bond Lengths and Their Alternations (BLA) and Distances (in Å), and Nuclear Independent Chemical Shift (NICS) (in ppm), Using Two Basis Sets^a

molecule (symmetry)	method	energy	long Al–Al distance	short Al–Al distance	bond length alternation	NICS at the center of the Al ₄ Li ₄ ring
$\begin{array}{c} \text{Al}_4 \text{Li}_4 \left(C_{2h} \right) \\ \text{Al}_4 \text{Li}_4 \left(C_{2h} \right) \end{array}$	6-311++G**	-999.9330848	2.68	2.55	0.13	-11.407
	LANL2DZ	-38.0803442	2.77	2.64	0.13	-9.313

^a The results, though with better basis sets, are in close agreement with those of Boldyrev et al.¹¹ and Pati et al.¹⁸

Figure 2. HOMO-4, HOMO, LUMO, and LUMO+4 are the four π -molecular orbitals of Al₄Li₄. The LUMO is rotated by 90° for clarity.

Figure 3. C_{2v} geometry of η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C.

Li, Na, and K) are very good candidates for higher-order nonlinear optical applications due to charge transfer from the highly electropositive ions (Li, Na, and K) to the Al₄ ring.

The synthesis of an antiaromatic compound is difficult because of its instability. Cyclobutadiene (C₄H₄), a 4π electron system, remained unisolated for a long time. Longuet-Higgins and Orgel proposed, in a landmark paper,^{15,16} that there will be stable complexes involving it and transition metals.¹⁷ Following this idea, Dutta and Pati¹⁸ suggested stable complexes of Al₄Li₄ species with Fe(CO)₃. A sandwich compound of Al₄Li₄ with Ni was also proposed. They concluded that complexation with 3d transition metal ions stabilizes the frontier orbital and introduces aromatic character by adding two electrons in the lowest unoccupied molecular orbital (LUMO) of Al₄Li₄.

In this paper, we propose a few compounds of Al_4Li_4 by capping with a main group element like C and its isoelectronic species BH. The CH⁺ species is an isolobal analogue of Fe(CO)₃, which is well-known for stabilizing C₄H₄. We found that capping with CH⁺ stabilizes Al₄Li₄, but to avoid extra charge, we explore capping with C and its isoelectronic species BH. The parent compound Li₃Al₄⁻ itself is known only as an ion in the vapor phase. So the synthesis would be a challenge. Perhaps one possibility would be to take a fused mixture/alloy containing Li-Al-C and vaporize it using a laser pulse. A wide range of anionic clusters may be produced, from which the desired cluster $[Al_4Li_3C^-]$ may be selected using a mass gate and consequently studied by photoelectron spectroscopy. An alternative could be to use the alloy as one of the electrodes in an electric discharge. The same could be done with Li–Al–B in the presence of H_2 gas. The reported compounds show high binding energy and high aromatic character. Our calculations show that d orbitals on the capped atom are not necessary to stabilize the antiaromatic Al₄Li₄. A suitable size, shape, and energy of the p orbitals of the capping species are sufficient to cause stability. We performed ab initio calculations on Al₄Li₄BH and Al₄Li₄C using Gaussian 03¹⁹ software. The calculation uses a density functional method with the B3LYP^{20,21} exchange correlation functional. We have used two different basis sets (6-311++G** and LANL2DZ) to check the consistency of the results.

 C_4H_4 is antiaromatic according to Hückel π -electron theory. Distortion to the rectangular geometry lifts the orbital degeneracy and leads to a singlet ground state. Distorted square-planar geometry is the transition state for fluxional rearrangement, where one rectangular form is converted to the other. In Al₄Li₄, the electropositive Li atoms donate electrons to the Al₄ ring, and as a result, it forms Al₄⁴⁻ with 4π electrons, similar to the situation in C₄H₄. In the case of Al₄Li₄, $\sigma - \pi$ separation is poor because of the small energy gap between σ and π molecular orbitals. So any consideration of aromaticity has to incorporate both σ and π electrons. In Al₄^{4–}, the σ electrons try to equalize all the bonds between Al atoms, while the π electrons would cause bond length alternation (BLA). BLA may be measured by the average difference between the bond lengths of two consecutive bonds in the four-membered ring. Our idea is to minimize the distortive effect of π electrons by introducing two more electrons to the π -type LUMO of Al₄Li₄.

The ground-state structure for the singlet state of Al₄Li₄ is found to be a rectangular Al₄ geometry (similar to C₄H₄) with surrounding Li atoms. The closed-shell C_{2h} geometry is reported to be the most stable isomer.¹⁸ We optimize the C_{2h} geometry shown in Figure 1, and the optimized parameters using 6-311++G** and Lanl2dz basis sets are given in Table 1. Structural parameters are in very good agreement with the earlier report which used the 6-311++G* basis set.¹¹

⁽¹⁴⁾ Datta, A; Pati, S. K. J. Phys. Chem. A 2004, 108, 9527.

⁽¹⁵⁾ Longuet-Higgins, H. C.; Orgel, L. E. J. J. Chem. Soc. 1956, 1969-1972.

⁽¹⁶⁾ Collmann, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; Oxford University Press: Oxford, U.K., 1987.

⁽¹⁷⁾ Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals*; Wiley: New York, 1988.

⁽¹⁸⁾ Datta, A.; Pati, S. K. J. Am. Chem. Soc. 2005, 127, 3496-3500.

⁽¹⁹⁾ Frisch, M. J. Gaussian 03, revision B.03; Gaussian Inc.: Pittsburg, PA, 2003.

⁽²⁰⁾ Lee, C.; Yang, W.; Parr, R. G. J. Chem. Phys. 1993, 98, 5648.

⁽²¹⁾ Becke, A. D. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.

Table 2. Single-Point Energy Decomposition Analysis, Energy in kcal/mol for the Compounds η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C

	η^4 -Al $_4$ Li $_4$ -BH			η^4 -Al $_4$ Li $_4$ -C		
energy components	C_{4v}	C_{2v}	energy diff. $(E_{C_{2v}} - E_{C_{4v}})$	C_{4v}	C_{2v}	energy diff. $(E_{C_{2v}} - E_{C_{4v}})$
electrostatic kinetic	-609.83	-612.02	-2.19	-629.09	-627.70	+1.39
energy	507.96	504.77	-3.19	486.58	486.09	-0.49
coulomb (steric $+$ orbit)	215.42	218.73	+3.31	253.27	250.51	-2.76
XC energy	693.91	693.06	+0.85	650.82	650.72	+0.1
total energy	-580.36	-581.59	-1.22	-540.07	-541.82	-1.76

Table 3. Binding Energy and Energy Difference (in kcal/mol), Nuclear Independent Chemical Shift (NICS) (in ppm), and Bond Length Alternation (BLA) (in Å) for the Two Compounds

molecule (symmetry)	method	binding energy	NICS at the center of the Al ₄ Li ₄ ring	bond length alternation	energy barrier for fluxionality energy diff. $(E_{C_{4v}} - E_{C_{2v}})$
η^4 -Al ₄ Li ₄ -BH (C_{2v})	6-311++G**	109.549	-49.347	0.05	0.928149
•	LANL2DZ	112.969	-46.289	0.05	1.05453
η^4 -Al ₄ Li ₄ -C (C_{2v})	6-311++G**	194.405	-58.564	0.03	1.71649
	LANL2DZ	184.478	-50.429	0.04	2.52215

Table 4. Energies of HOMO and LUMO of Free Al₄Li₄ and the Molecular Orbitals That Result from Their Interaction with the p_x and p_y Orbitals of the Caps BH and C^a

molecule (symmetry)	6-311++G**			LANL2DZ		
Al ₄ Li ₄ (C_{2h})	HOMO	LUMO	(LUMO-HOMO)	HOMO	LUMO	(LUMO-HOMO)
	-0.1290	-0.0760	0.053	-0.1324	-0.0802	0.0522
η^4 -Al ₄ Li ₄ -BH (C_{2v})	HOMO-2	HOMO-1	(HOMO-1-HOMO-2)	HOMO-2	HOMO-1	(HOMO-1-HOMO-2)
	-0.1629	-0.1590	0.0039	-0.1655	-0.1621	0.0034
η^{4} -Al ₄ Li ₄ -C (C_{2v})	HOMO-3	HOMO-2	(HOMO-2-HOMO-3)	HOMO-3	HOMO-2	(HOMO-2-HOMO-3)
	-0.1964	-0.1911	0.0053	-0.1964	-0.1912	0.0052

^a Energies are given in atomic units.

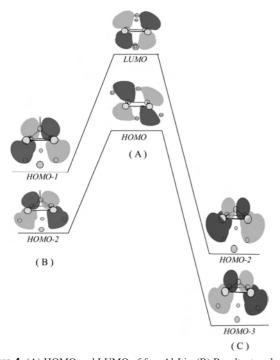
The bond length alternation of 0.13 Å suggests Al₄Li₄ to be an antiaromatic compound. But the negative magnitude of nuclear independent chemical shift (NICS, at the center of the ring), -11.407 ppm (using the 6-311++g** basis set) and -9.313 ppm (using the LANL2DZ basis set) of Al₄Li₄, supports the claim by Schleyer et al.¹² that Al₄Li₄ has higher σ aromaticity than π antiaromaticity.²² There are four π molecular orbitals of Al₄Li₄ (see Figure 2). Among these four π molecular orbitals, two are filled up with the four available electrons, and this is responsible for the antiaromaticity of Al₄Li₄. The doubly occupied HOMO is responsible for the rectangular shape of the Al₄ ring. If one introduces two more electrons so that the LUMO of Al₄Li₄ also gets filled, one can expect bond length equalization. To achieve this, we assume Al₄Li₄ to be coordinated with C/BH. We find that the resultant compounds are stable and the binding increases the aromatic character and reduces the bond length alternation. We conclude that Al₄Li₄ can be stabilized by nontransition metal species too. The stabilization is due to the interaction of p_x and p_y orbitals of C/BH with the ring. We also find that the capping reduces the activation barrier for fluxional rearrangement and causes fluxionality at room temperature.

2. η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C

 η^{4} -C₄H₄-Fe(CO)₃ was reported long ago.²³ We imagined a new complex by substituting C₄H₄ with Al₄Li₄ and Fe(CO)₃ with BH/C. We found that the C_{4v} geometry is not a minimum in the potential energy surface (it shows a single negative frequency of -67 cm⁻¹ for η^{4} -Al₄Li₄-BH and -92 cm⁻¹ for η^{4} -Al₄Li₄-C for the 6-311++g** basis set), whereas the C_{2v} geometry of η^{4} -Al₄Li₄-BH and η^{4} -Al₄Li₄-C are true minima with very small bond length alternation. The imaginary frequency associated with the C_{4v} geometry shows predominantly the movement of Li atoms distorting to give C_{2v} geometry. To understand why the C_{4v} geometry is not stable, we did a single-point energy decomposition analysis for the optimized structures (C_{4v} and C_{2v}) of η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C using the TZ2P basis set and ADF package.^{24,25} The results are given in Table 2. Energy decomposition analysis clearly suggests that the driving force for the change in geometry (from C_{4v} to C_{2v}) is mainly due to the reduction of kinetic energy along with electrostatic stabilization in the case of η^4 -Al₄Li₄-BH and the reduction of Coulombic repulsion in the case of η^4 -Al₄Li₄-C. The C_{2v} geometries of η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C are shown in Figure 3. The optimized parameters of interest for these compounds are given in Table 3.

The binding energy or the stability of these compounds can be studied using the following fragmentation scheme:

$$\eta^{4}$$
-Al₄Li₄-BH = Al₄Li₄ + BH
 η^{4} -Al₄Li₄-C = Al₄Li₄ + C


The energy of singlet Al₄Li₄ (C_{2h} symmetry) has been used to calculate the binding energy. The binding energy for η^4 -Al₄Li₄-BH is found to be 109.55 kcal/mol (6-311++g**) and 112.97 kcal/mol (LANL2DZ). The binding energy for η^4 -Al₄Li₄-C is found to be 194.41 kcal/mol (6-311++g**) and 184.48 kcal/mol (LANL2DZ). In comparison, the reported¹⁸ binding energy of η^4 -Al₄Li₄-Fe(CO)₃ is 106.04

⁽²²⁾ Shetty, S.; Kanhare, D. G.; Pal, S. J. Phys. Chem. A 2004, 108, 628.

⁽²³⁾ Emerson, G. F.; Watts, L.; Pettit, R. J. Am. Chem. Soc. 1965, 87, 131–133.

⁽²⁴⁾ Bickelhaupt, F. M.; Baerends, E. J. Rev. Comput. Chem. 2000, 15, 1.

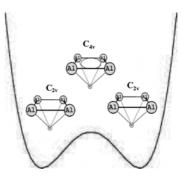

⁽²⁵⁾ te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; van Gibergen, S. J. A.; Fonseca Guerra, C.; Srijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931.

Figure 4. (A) HOMO and LUMO of free Al₄Li₄. (B) Resultant molecular orbitals formed by the interaction of the HOMO–LUMO of free Al₄Li₄ and p_x and p_y of the BH cap. (C) Resultant molecular orbitals formed by the interaction of free Al₄Li₄ and p_x and p_y of the C cap. LUMO of (A), HOMO-1 of (B), and HOMO-2 of (C) are rotated by 90° for clarity.

kcal/mol. The high binding energies for η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C suggest that Al₄Li₄ is very well stabilized with capping by BH or C.

The NICS value at the center of the Al₄ ring of the compound η^4 -Al₄Li₄-BH is -49.347 ppm (6-311++g**) and -46.289 ppm (LANL2DZ), whereas for η^4 -Al₄Li₄-C, the NICS value is -58.564 ppm (6-311++g**) and -50.429 ppm (LANL2DZ). The large negative value of NICS suggests more aromatic character in the above compounds than with a reported value of -25.44 ppm for η^4 -Al₄Li₄-Fe(CO)₃.¹⁸ The BLA for η^4 -Al₄Li₄-BH is 0.05 Å. η^4 -Al₄Li₄-C shows a BLA of 0.03 Å (for the 6-311++ G^{**} basis set) and 0.04 Å (for the LANL2DZ basis set). The bond length alternation of free Al₄Li₄ is 0.13 Å. The reduction of BLA upon capping with BH or C supports the increase of aromatic character in the Al4 ring. The nonbonding HOMO and LUMO of Al₄⁻⁴ is stabilized by the interaction with the p_x and p_{y} orbitals of the cap M(BH/C). (The Al₄ ring is taken to be in the xy plane, with x and y passing through the center of Al–Al bonds.) The size, energy, and symmetry of p_x and p_{y} orbitals of carbon are such that the overlap with the HOMO and LUMO of Al4⁻⁴ is at a maximum, and the result is a higher binding energy of η^4 -Al₄Li₄-C. η^4 -Al₄Li₄-BH is also stable, but the p_x and p_y orbitals of BH are slightly more diffuse than those of carbon. We have identified the two filled molecular orbitals of η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C that result from the interaction of p_x and p_y of the cap with the HOMO and LUMO of Al₄ Li₄. Our calculation shows that, after interacting with the cap, the HOMO and LUMO of free η^4 -Al₄Li₄ are stabilized and change to HOMO-1 and HO-

Figure 5. Schematic diagram of fluxionality (M = BH, C).

MO-2 for η^4 -Al₄Li₄-BH and HOMO-2 and HOMO-3 for η^4 -Al₄Li₄-C, respectively. These molecular orbitals are shown in Figure 4.

Table 4 gives the quantitative measure of the stabilization of the HOMO and LUMO of free Al₄Li₄ upon interaction with the p_x and p_y orbitals of the cap atoms (BH/C). We found that the energy difference between HOMO-2 and HOMO-3 for η^4 -Al₄Li₄-C is larger than the energy difference between HOMO-1 and HOMO-2 of η^4 -Al₄Li₄-BH (see Table 4). A lower energy gap between these two molecular orbitals should imply lower bond length alternation. But the lower bond length alternation and higher negative NICS value (see Table 3) for η^4 -Al₄Li₄-C could be due to the larger effect of σ electrons. Carbon interacts more strongly with the σ molecular orbitals of Al₄Li₄ than BH due to the suitable size and energy of the p_x and p_y orbitals. Hence, the σ valence molecular orbitals of η^4 -Al₄Li₄-C are more stabilized than those of η^4 -Al₄Li₄-BH.

We investigated the fluxionality of the Al₄Li₄ ring when it is bonded to the cap of BH and C. When the BLA is less, the energy barrier for ring fluxionality becomes less and the possibility of showing fluxional behavior at room temperature increases. The C_{4v} geometries of η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C are identified to be the transition state of fluxional rearrangement (Figure 5). The energy difference between the C_{4v} and C_{2v} geometries of η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C (activation energy for fluxional rearrangement) is given in Table 3. A very small activation energy ($\simeq 0.9-2.5$ kcal/mol) suggests that these molecules will show fluxionality at room temperature. The rate constants for fluxional rearrangement for η^4 -Al₄Li₄-C and η^4 -Al₄Li₄-BH calculated using transition state theory 26 are 3 \times 10^{14} s^{-1} and 9.7 \times 10^{14} $s^{-1},$ respectively, at 298 K. The frequencies required for the calculation were taken from Gaussian calculations (6- $311++g^{**}$ basis set).

Summary and Conclusions

In conclusion, we have demonstrated that all metal species such as Al₄Li₄ can be stabilized by capping with BH or C. The stabilization is due to suitable ring cap compatibility between the p_x and p_y orbitals of the capped atom and the HOMO and LUMO of Al₄Li₄. A donation of two electrons to the ring by the cap atoms introduces aromatic character.

⁽²⁶⁾ Nikitin, E. E. *Theory of Elementary Atomic and Molecular Processes in Gases*; Clarendon Press: Oxford, U.K., 1974.

We also conclude that, to stabilize the antiaromatic compound Al₄Li₄, the presence of d electrons of the cap is not a necessary condition. We have shown that Al₄Li₄ with a BH or C cap has very high binding energy, which suggests that these compounds should be considered as very good candidates for synthesis.

We have shown that, after capping with BH and C, the bond length alternation is reduced to a large extent and the activation barrier for the fluxional motion becomes small. A very high rate of fluxional rearrangement at room temperature suggests that η^4 -Al₄Li₄-BH and η^4 -Al₄Li₄-C will show fluxionality. We hope that our work will provide a motivation for the synthesis of these molecules. Acknowledgment. Priyadarshi Satpati is thankful to the Council for Scientific and Industrial Research (CSIR), Govt. of India for financial support, and Supercomputer Education and Research Center (SERC), IISc for the computational facility. We thank Prof. E. D. Jemmis and Mr. Biswarup Pathak for helpful discussions and suggestions.

Supporting Information Available: Cartesian coordinates, total energy (in Hartree), number of imaginary frequencies, and lowest frequency (in cm^{-1}) of the structures. This material is available free of charge via the Internet at http://pubs.acs.org.

IC701040G